Code to reproduce Figures in Section 11.4
head(us48cancertot)
## Name state fips totcount totpop totrate AIAN.HL AIAN.NHL
## 1 Alabama AL 1 25611.33 4736261 540.1333 0.1272515 0.5892589
## 2 Arizona AZ 4 29450.87 6363790 462.0467 1.3033103 4.2843893
## 3 Arkansas AR 5 15938.33 2894066 550.0467 0.1995402 0.7781714
## 4 California CA 6 165372.00 37325590 442.7733 1.2801805 0.5671331
## 5 Colorado CO 8 22118.60 5047750 437.6800 0.9988665 0.7593700
## 6 Connecticut CT 9 21617.73 3555387 607.9467 0.2868551 0.2620113
## API.HL API.NHL BAA.HL BAA.NHL White.HL White.NHL
## 1 0.08855458 1.264443 0.2878583 26.567691 3.073277 68.00167
## 2 0.37435044 3.157346 0.6966057 4.198725 27.147177 58.83810
## 3 0.08576009 1.550466 0.2291451 15.805733 5.679722 75.67146
## 4 0.81832412 14.032092 0.8891200 6.373004 34.193313 41.84683
## 5 0.25679949 3.199021 0.5706648 4.324408 18.605895 71.28497
## 6 0.18256169 4.045786 1.5652350 10.071039 11.344880 72.24163
plot_usmap(data = us48cancertot, values = "totrate", color = "red", exclude=c("AK", "HI")) +
# scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
scale_fill_gradientn(colours=colpalette,na.value="black",limits=range(us48cancertot$totrate),
name = "Cancer rate") +
theme(legend.position = "right")
ggsave(paste0(figurepath, "uscancer_rate.png"), width=8.27, height=3.44, dpi=300)
us48cancertot$white <- us48cancertot$White.HL + us48cancertot$White.NHL
com1 <- c("gray15","gray17","gray19","gray21", "white")#colour palette
plot_usmap(data = us48cancertot, values = "White.NHL", color = "red", exclude=c("AK", "HI")) +
# scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
scale_fill_gradientn(colours=com1,na.value="black",limits=range(us48cancertot$White.NHL),
name = "Percentage of White") +
theme(legend.position = "right")
ggsave(paste0(figurepath, "percentage_of_white.png"), width=8.27, height=3.44, dpi=300)
cor(us48cancertot$totrate, us48cancertot$white)
## [1] 0.1255233
cor(us48cancertot$totrate, us48cancertot$White.NHL)
## [1] 0.4569091
plot_usmap(data = us48cancertot, values = "BAA.NHL", color = "red", exclude=c("AK", "HI")) +
# scale_fill_continuous(name = "Cancer rate", label = scales::comma) +
scale_fill_gradientn(colours=rev(com1),na.value="black",limits=range(us48cancertot$BAA.NHL),
name = "Percentage") +
theme(legend.position = "right")
ggsave(paste0(figurepath, "baa_nhl.png"), width=8.27, height=3.44, dpi=300)
## Now the plots
# Plot the observed smr for all the years
head(us48cancertot)
## Name state fips totcount totpop totrate AIAN.HL AIAN.NHL
## 1 Alabama AL 1 25611.33 4736261 540.1333 0.1272515 0.5892589
## 2 Arizona AZ 4 29450.87 6363790 462.0467 1.3033103 4.2843893
## 3 Arkansas AR 5 15938.33 2894066 550.0467 0.1995402 0.7781714
## 4 California CA 6 165372.00 37325590 442.7733 1.2801805 0.5671331
## 5 Colorado CO 8 22118.60 5047750 437.6800 0.9988665 0.7593700
## 6 Connecticut CT 9 21617.73 3555387 607.9467 0.2868551 0.2620113
## API.HL API.NHL BAA.HL BAA.NHL White.HL White.NHL white
## 1 0.08855458 1.264443 0.2878583 26.567691 3.073277 68.00167 71.07494
## 2 0.37435044 3.157346 0.6966057 4.198725 27.147177 58.83810 85.98527
## 3 0.08576009 1.550466 0.2291451 15.805733 5.679722 75.67146 81.35118
## 4 0.81832412 14.032092 0.8891200 6.373004 34.193313 41.84683 76.04015
## 5 0.25679949 3.199021 0.5706648 4.324408 18.605895 71.28497 89.89087
## 6 0.18256169 4.045786 1.5652350 10.071039 11.344880 72.24163 83.58651
us48cancertot$totcount <- round(us48cancertot$totcount)
a1 <- sum(us48cancertot$totcount)
a2 <- sum(us48cancertot$totpop)
rr <- a1/a2
us48cancertot$exptot <- rr * us48cancertot$totpop
summary(us48cancertot$exptot)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2926 10453 24135 33637 37189 197084
colnames(us48cancertot)
## [1] "Name" "state" "fips" "totcount" "totpop" "totrate"
## [7] "AIAN.HL" "AIAN.NHL" "API.HL" "API.NHL" "BAA.HL" "BAA.NHL"
## [13] "White.HL" "White.NHL" "white" "exptot"
us48cancertot$logexptot <- log(us48cancertot$exptot)
head(us48cancer0317)
## fips state Year totcount totpop totrate malescount malespop malesrate
## 1 1 AL 2003 21472 4503491 476.8 11228 2179422 515.2
## 2 1 AL 2004 22951 4530729 506.6 12024 2192872 548.3
## 3 1 AL 2005 23342 4565917 511.2 12172 2211403 550.4
## 4 1 AL 2006 24113 4628981 520.9 12798 2243501 570.4
## 5 1 AL 2007 25086 4672840 536.8 13236 2265565 584.2
## 6 1 AL 2008 26093 4718206 553.0 13708 2287949 599.1
## femalescount femalespop femalesrate AIAN.HL AIAN.NHL API.HL API.NHL
## 1 10244 2324069 440.8 0.06708129 0.5561019 0.05142677 0.9124255
## 2 10927 2337857 467.4 0.07808898 0.5614108 0.06045385 0.9714331
## 3 11170 2354514 474.4 0.08941301 0.5661292 0.06757400 1.0243107
## 4 11315 2385480 474.3 0.10133980 0.5719185 0.07634510 1.0712509
## 5 11850 2407275 492.3 0.11241558 0.5782351 0.08480924 1.1150392
## 6 12385 2430257 509.6 0.12699742 0.5833997 0.09126350 1.1586819
## BAA.HL BAA.NHL White.HL White.NHL unemployment
## 1 0.2035754 26.22443 1.975512 70.00944 6.0
## 2 0.2141819 26.25379 2.147623 69.71302 5.7
## 3 0.2288719 26.26904 2.345592 69.40907 4.5
## 4 0.2426236 26.34064 2.557496 69.03839 4.0
## 5 0.2551981 26.36388 2.771569 68.71885 4.0
## 6 0.2730275 26.41459 2.978441 68.37359 5.7
summary(us48cancer0317$totcount)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2370 9755 24241 33637 38868 176983
summary(us48cancer0317$unemployment)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.600 4.500 5.400 5.921 7.000 13.700
a1 <- sum(us48cancer0317$totcount)
a2 <- sum(us48cancer0317$totpop)
rr <- a1/a2
us48cancer0317$exptot <- rr * us48cancer0317$totpop
summary(us48cancer0317$exptot)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2658 10061 23959 33637 38976 208034
mus48cancer0317 <- us48cancer0317
mus48cancer0317$obs_smr <- mus48cancer0317$totcount/mus48cancer0317$exptot
mr <- range(mus48cancer0317$obs_smr)
mr
## [1] 0.6187699 1.3236774
summary(mus48cancer0317$obs_smr)
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6188 0.9578 1.0312 1.0251 1.1107 1.3237
b <- c(-Inf, 0.8, 1.0, 1.2, Inf)
labss <- c("<0.8", "0.8-1", "1-1.2", ">1.2")
mus48cancer0317$catsmrobs <- factor(cut(mus48cancer0317$obs_smr, breaks=b, labels=labss))
table(mus48cancer0317$catsmrobs)
##
## <0.8 0.8-1 1-1.2 >1.2
## 30 238 397 55
levels(mus48cancer0317$catsmrfit)
## NULL
table(mus48cancer0317$catsmrfit)
## < table of extent 0 >
head(mus48cancer0317)
## fips state Year totcount totpop totrate malescount malespop malesrate
## 1 1 AL 2003 21472 4503491 476.8 11228 2179422 515.2
## 2 1 AL 2004 22951 4530729 506.6 12024 2192872 548.3
## 3 1 AL 2005 23342 4565917 511.2 12172 2211403 550.4
## 4 1 AL 2006 24113 4628981 520.9 12798 2243501 570.4
## 5 1 AL 2007 25086 4672840 536.8 13236 2265565 584.2
## 6 1 AL 2008 26093 4718206 553.0 13708 2287949 599.1
## femalescount femalespop femalesrate AIAN.HL AIAN.NHL API.HL API.NHL
## 1 10244 2324069 440.8 0.06708129 0.5561019 0.05142677 0.9124255
## 2 10927 2337857 467.4 0.07808898 0.5614108 0.06045385 0.9714331
## 3 11170 2354514 474.4 0.08941301 0.5661292 0.06757400 1.0243107
## 4 11315 2385480 474.3 0.10133980 0.5719185 0.07634510 1.0712509
## 5 11850 2407275 492.3 0.11241558 0.5782351 0.08480924 1.1150392
## 6 12385 2430257 509.6 0.12699742 0.5833997 0.09126350 1.1586819
## BAA.HL BAA.NHL White.HL White.NHL unemployment exptot obs_smr
## 1 0.2035754 26.22443 1.975512 70.00944 6.0 23779.00 0.9029816
## 2 0.2141819 26.25379 2.147623 69.71302 5.7 23922.82 0.9593769
## 3 0.2288719 26.26904 2.345592 69.40907 4.5 24108.62 0.9682015
## 4 0.2426236 26.34064 2.557496 69.03839 4.0 24441.60 0.9865556
## 5 0.2551981 26.36388 2.771569 68.71885 4.0 24673.18 1.0167314
## 6 0.2730275 26.41459 2.978441 68.37359 5.7 24912.72 1.0473765
## catsmrobs
## 1 0.8-1
## 2 0.8-1
## 3 0.8-1
## 4 0.8-1
## 5 1-1.2
## 6 1-1.2
dim(mus48cancer0317)
## [1] 720 24
colnames(mus48cancer0317)
## [1] "fips" "state" "Year" "totcount" "totpop"
## [6] "totrate" "malescount" "malespop" "malesrate" "femalescount"
## [11] "femalespop" "femalesrate" "AIAN.HL" "AIAN.NHL" "API.HL"
## [16] "API.NHL" "BAA.HL" "BAA.NHL" "White.HL" "White.NHL"
## [21] "unemployment" "exptot" "obs_smr" "catsmrobs"
com <- c("green4", "green2", "yellow", "red2")
i <- 2003
colnames(mus48cancer0317)
## [1] "fips" "state" "Year" "totcount" "totpop"
## [6] "totrate" "malescount" "malespop" "malesrate" "femalescount"
## [11] "femalespop" "femalesrate" "AIAN.HL" "AIAN.NHL" "API.HL"
## [16] "API.NHL" "BAA.HL" "BAA.NHL" "White.HL" "White.NHL"
## [21] "unemployment" "exptot" "obs_smr" "catsmrobs"
dim(mus48cancer0317)
## [1] 720 24
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
head(dp)
## fips state catsmrobs
## 1 1 AL 0.8-1
## 16 10 DE 1-1.2
## 31 12 FL 1-1.2
## 46 13 GA 0.8-1
## 61 16 ID 0.8-1
## 76 17 IL 0.8-1
smr2003 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
# scale_fill_gradientn(colours=com,na.value="black",limits=mr, name = "smr") +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2003
i <- 2004
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2004 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2004
i <- 2005
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2005 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2005
i <- 2006
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2006 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2006
i <- 2007
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2007 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2007
i <- 2008
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2008 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2008
i <- 2009
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2009 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2009
i <- 2010
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2010 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2010
i <- 2011
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2011 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2011
i <- 2012
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2012 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2012
i <- 2013
dp <- mus48cancer0317[mus48cancer0317$Year==i, c("fips", "state", "catsmrobs")]
#head(dp)
smr2013 <- plot_usmap(data = dp, values = "catsmrobs", color = "red", exclude=c("AK", "HI")) +
scale_fill_manual(values =com, guides("SMR"), guide = guide_legend(reverse=TRUE), na.translate = FALSE) +
theme(legend.position = "right") +
# theme(legend.position = "none") +
theme(plot.title = element_text(hjust = 0.5, face = "bold")) +
labs(title= i)
smr2013