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To my family, parents, teachers and 
professors who taught me everything.



Preface 

It is a daunting task to contemplate writing an introductory textbook in Statistics 
and Probability since there are so many excellent text books already available 
in the market. However there seems to be a lack of textbooks/literature detailing 
statistical software R which contain sufficient levels of mathematical rigour whilst 
also remaining unambigious and comprehensible to the reader. There are even fewer 
introductory books which can be adopted as entry level texts for degree programmes 
with a large mathematical content, such as mathematics with statistics, operations 
research, economics, actuarial science and data science. 

The market is saturated with a vast number of books on introductory math-
ematical statistics. Among the most prominent books in this area are the ones 
written by Professor Robert Hogg and his co-authors, e.g. the book Probability 
and Statistical Inference, 8th Edition (2010) by Hogg and Tanis (Pearson). Laid 
out in 11 chapters, this book is one of the best out there for learning mathematical 
statistics. Competitive books include: (i) Probability and Statistics byM. H. Degroot 
and M. J. Schervish (Pearson), (iii) Statistical Inference by G. Casella and R. 
Berger (Duxbury), (iii) A First Course in Probability by S. A. Ross (Pearson), (iv) 
Mathematical statistics with applications by D. D. Wackerly, W. Mendenhall and 
R. L. Scheaffer (Duxbury). These books assume a higher level of preparedness in 
mathematical methods that the typical first year undergraduate students do not have. 
Also these texts typically do not provide a plethora of examples that can help put 
the target audience of the first year undergraduate students at ease. Such students, 
fresh out of secondary school, are used to seeing lots of examples in each topic they 
studied. Universities in USA mostly adopt such text books in their masters level 
statistics courses. Lastly, none of these books integrate R in their presentation of the 
topics. 

Apart from the above list, the book most relevant to the current textbook is 
Introductory Statistics with R by Peter Dalgaard published by Springer in 2008. 
Dalgaard’s book is more targeted for a biometric/medical science audience whereas 
the current textbook targets students in a wider field of data-based and mathematical 
sciences. For example, Dalgaard’s book include multiple regression and survival 
analysis. Multiple regression is too advanced for first year and survival analysis is 
too advanced for even second year students, who still are in the process acquiring 
skills in statistical inference and modelling. Also, unlike the Dalgaard’s book, 
the current textbook does not assume knowledge of basic statistics to start with

vii



viii Preface

and hence is appealing to a wider audience of mathematics students who have 
not learned probability and statistics in their previous studies. The book Teaching 
Statistics: A Bag of Tricks by Andrew Gelman and Deborah Nolan (2nd Edition), 
published by the Oxford University Press, discusses many excellent methods 
for teaching practical statistics. However, this book is concerned about teaching 
statistics to aspiring applied scientists as well as mathematicians. 

The current book aims to fill this gap in the market by taking a more direct 
targeted approach in providing an authentic text for introducing both mathematical 
and applied statistics with R. The book aims to provide a gentle introduction 
by keeping in mind the knowledge gap created by previous, ether none or non-
rigorous, studies of statistics without the proper and rigorous use of mathematical 
symbols and proofs. This self-contained introductory book is also designed to appeal 
to first time students who were not previously exposed to the ideas of probability 
and statistics but have some background in mathematics. Many worked examples 
in the book are likely to be attractive to them, and those examples will build 
a transition bridge from their previous studies to university level mathematics. 
Moreover, integration of R throughout is designed to make learning statistics easy 
to understand, fun and exciting. 

The book is presented in five parts. Part I (Chaps. 1 and 2) introducing basic 
statistics and R does not assume knowledge and skills in higher level mathematics 
such as multivariate calculus and matrix algebra. Part II (Chaps. 3 to 8) introduces 
standard probability distributions and the central theorem. Part III (Chaps. 9 to 12) 
introduces basic ideas of statistical inference. As a result, and quite deliberately, 
this part presents statistical inference methods such as the t-tests and confidence 
intervals without first deriving the necessary t and . χ2 distributions. Such derivations 
are delayed until the later chapters in Part IV. In this part (Chaps. 13 to 16), we 
present materials for typical second year courses in statistical distribution theory 
discussing advanced concepts of moment generating functions, univariate and 
bivariate transformation, multivariate distributions and concepts of convergence. 
Both this and the final Part V (Chaps. 17, 18 and 19) assume familiarity of results 
in multivariate calculus and matrix algebra. Part V of the book is devoted to 
introducing ideas in statistical modelling, including simple and multiple linear 
regression and one way analysis of variance. Several data sets are used as running 
examples, and dedicated R code blocks are provided to illustrate many key concepts 
such as the Central Limit Theorem and the weak law of large numbers. The reader 
can access those by installing the accompanying R package ipsRdbs in their 
computer. 

I am highly indebted to all of my current and past mathematics and statistics 
colleagues in the Universities of Cardiff and Southampton, especially: Brian Bailey, 
Stefanie Biedermann, Dankmar Böhning, Russell Cheng, Jon Cockayne, Frank 
Dunstan, Jon Forster, Steven Gilmour, Terence Iles, Gerard Kennedy, Alan Kimber, 
Susan Lewis, Wei Liu, Zudi Lu, John W. McDonald, Robin Mitra, Barry Nix, Helen 
Ogden, Antony Overstall, Vesna Perisic, Philip Prescott, Dasha Semochkina, T. M. 
Fred Smith, Peter W. Smith, Alan Welsh, Dave Woods, Chieh-Hsi Wu, and Chao 
Zheng, whose lecture notes for various statistics courses inspired me to put together
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this manuscript. Often I have used excerpts from their lecture notes, included their 
data sets, examples, exercises and illustrations, without their full acknowledgement 
and explicit attribution. However, instead of them, I acknowledge responsibility for 
the full content of this book. 

I also thank all my bachelor’s and master’s degree students who read and gave 
feedback on earlier versions of my lecture notes leading to drafting of this book. 
Specifically I thank three Southampton BSc students: Mr Minh Nguyen, Mr Ali 
Aziz and Mr Luke Brooke who read and corrected a preliminary draft of this book. 
I also thank PhD students Mr Indrajit Paul (University of Calcutta), who introduced 
me to use the latex package tikz for drawing several illustrations, and Ms Joanne 
Ellison (Southampton), who helped me typeset and proofread Parts I–III of the 
book. Lastly, I thank two anonymous reviewers whose suggestions I incorporated 
to improve various aspects including coverage and presentation. 

Winchester, UK Sujit K. Sahu
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Introduction to Basic Statistics and R



1Introduction to Basic Statistics 

Abstract 

Chapter 1: This chapter introduces basic statistics such as the mean, median and 
mode and standard deviation. It also provides introduction to many motivating 
data sets which are used as running examples throughout the book. An accessible 
discussion is also provided to debate issues like: “Lies, damned lies and 
statistics” and “Figures don’t lie but liars can figure.” 

1.1 What Is Statistics? 

1.1.1 Early and Modern Definitions 

The word statistics has its roots in the Latin word status which means the state, and 
in the middle of the eighteenth century was intended to mean: 

. collection, processing and use of data by the state.

With the rapid industrialisation of Europe in the first half of the nineteenth century, 
statistics became established as a discipline. This led to the formation of the Royal 
Statistical Society, the premier professional association of statisticians in the UK and 
also world-wide, in 1834. During this nineteenth century growth period, statistics 
acquired a new meaning as the interpretation of data or methods of extracting 
information from data for decision making. Thus statistics has its modern meaning 
as the methods for: 

. collection, analysis and interpretation of data.

Indeed, the Oxford English Dictionary defines statistics as: “The practice or science 
of collecting and analysing numerical data in large quantities, especially for the 
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purpose of inferring proportions in a whole from those in a representative sample.” 
Note that the word ‘state’ has been dropped from its definition. Dropping of the word 
‘state’ reflects the wide spread use of statistics in everyday life and in industry—not 
only the government. The ways to compile interesting statistics, more appropriately 
termed as statistical methods, are now essential for every decision maker wanting to 
answer questions and make predictions by observing data. 

Example questions from everyday life may include: will it rain tomorrow? Will 
the stock market crash tomorrow? Does eating red meat make us live longer? Is 
smoking harmful during pregnancy? Is the new shampoo better than the old as 
claimed by its manufacturer? How do I invest my money to maximise the return? 
How long will I live for? A student joining university may want to ask: Given my 
background, what degree classification will I get at graduation? What prospects do 
I have in my future career? 

1.1.2 Uncertainty: The Main Obstacle to Decision Making 

The main obstacle to answering the types of questions above is uncertainty, 
which means lack of one-to-one correspondence between cause and effect. For  
example, having a diet of (hopefully well-cooked!) red meat for a period of time 
is not going to kill someone immediately. The effect of smoking during pregnancy 
is difficult to judge because of the presence of other factors, e.g. diet and lifestyle; 
such effects will not be known for a long time, e.g. at least until the birth. Thus, 
according to a famous quote: 

“Uncertainty is the only certainty there is, ...” 

Yet another quote claims, “In statistics, there is uncertainty over the past, present 
and future.” This again emphasises the importance of presence of uncertainty in the 
data for the purposes of drawing conclusions with certainty. 

1.1.3 Statistics Tames Uncertainty 

It1 is clear that we may never be able to get to the bottom of every case to learn the 
full truth and so will have to make a decision under uncertainty; thus we conclude 
that mistakes cannot be avoided when making decisions based on uncertain data. If 
mistakes cannot be avoided, it is better to know how often we make mistakes (which 
provides knowledge of the amount of uncertainty) by following a particular rule of

1 This section is based on Section 2.2 of the book Statistics and Truth by C. R. Rao cited as Rao 
[15]. 
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decision making. Such knowledge could be put to use in finding a rule of decision 
making which does not betray us too often, or which minimises the frequency of 
wrong decisions, or which minimises the loss due to wrong decisions. Thus we 
have the following equation due to Rao [15]: 

Uncertain knowledge + 
Knowledge of the extent of 
uncertainty in it 

= Usable knowledge 

In the above equation uncertain data are noted as uncertain knowledge and the 
decisions we make based on data are denoted by the phrase usable knowledge. The 
amount of uncertainty, as alluded to in the middle box, is evaluated by applying 
appropriate statistical methods. Without an explicit assessment of uncertainty, 
conclusions (or decisions) are often meaningless guesses with vast amounts of 
uncertainty. Although such conclusions may turn out to be correct just by sheer 
chance, or luck, in a given situation, the methods used to draw such conclusions 
cannot always be guaranteed to yield sound decisions. A carefully crafted statistical 
method, with its explicit assessment of uncertainty, will allow us to make better 
decisions on average, although it is to be understood that it is not possible to guess 
exactly always correctly in the presence of uncertainty. 

How does statistics tame uncertainty? The short answer to this question is by 
evaluating it. Uncertainty, once evaluated, can be reduced by eliminating the causes 
and contributors of uncertainty as far as possible and then by hunting for better 
statistical methods which have lower levels of uncertainty. Explicit statistical model 
based methods may help in reducing uncertainties. This book will illustrate such 
uncertainty reduction in later chapters. Uncertainty reduction is often the most 
important task left to the statisticians as any experimenter is free to guess about 
any aspects of their experiments. Indeed, in many practical situations results (and 
conclusions) are quoted without any mention (and assessment) of uncertainty. Such 
cases are dangerous as those may give a false sense of security implied by the 
drawn conclusions. The associated, perhaps un-evaluated, levels of uncertainty may 
completely overwhelm the drawn conclusions. 

1.1.4 Place of Statistics Among Other Disciplines 

Studying statistics equips the learner with the basic skills in data analysis and 
doing science with data in any scientific discipline. Statistical methods are to be 
used wherever there is any presence of uncertainty in the drawn conclusions and 
decisions. Basic statistics, probability theory, and statistical modelling provide the 
solid foundation required to learn and use advanced methods in modern data science, 
machine learning and artificial intelligence. Students studying mathematics as their 
major subject may soon discover that learning of statistical theories gives them the 
opportunity to practice their deductive mathematical skills on real life problems.
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In this way, they will be able to improve at mathematical methods while studying 
statistical methods. This book will illustrate these ideas repeatedly. 

The following quote by Prof. C. R. Rao, see Rao [15], sums up the place of 
statistics among other disciplines. 

. “All knowledge is, in final analysis, history.

All sciences are, in the abstract, mathematics.

All judgements are, in their rationale, statistics.”

Application of statistics and statistical methods require dealing with uncertainty 
which one can never be sure about. Hence the mention of the word ‘judgements’ 
in the above quote. Making judgements requires a lot of common sense. Hence 
common sense thinking together with applications of mathematical and inductive 
logic is very much required in any decision making using statistics. 

1.1.5 Lies, Damned Lies and Statistics? 

Statistics and statistical methods are often attacked by statements such as the famous 
quotation in the title of this section. Some people also say, “you can prove anything 
in statistics!” and many such jokes. Such remarks bear testimony to the fact that 
often statistics and statistical methods are miss-quoted without proper verification 
and robust justification. It is clear that some people may intentionally miss-use 
statistics to serve their own purposes while some other people may be incompetent 
in statistics to draw sound conclusions, and hence decisions in practical applications. 
Thus, admittedly and regretfully, statistics can be very much miss-used and miss-
interpreted especially by dis-honest individuals. 

However, we statisticians argue:

• “Figures won’t lie, but liars can figure!”
• “Data does not speak for itself”
• “Every number is guilty unless proved innocent.” 

Hence, although people may miss-use the tools of statistics, it is our duty to learn, 
question and sharpen those tools to develop scientifically robust and strong argu-
ments. As discussed before, statistical methods are the only viable tool whenever 
there is uncertainty in decision making. It will be wrong to feel certainty where no 
certainty exists in the presence of uncertainty. In scientific investigations, statistics 
is an inevitable instrument in search of truth when uncertainty cannot be totally 
removed from decision making. Of-course, a statistical method may not yield the 
best predictions in every practical situation, but a systematic and robust application 
of statistical methods will eventually win over pure guesses. For example, statistical 
methods are the only definitive proof that cigarette smoking is bad for human health.
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Fig. 1.1 The time at which Shipman’s patients died, compared to the times at which patients of 
other local family doctors died. This is Figure 0.2 (reproduced here with permission) in the book 
“The Art of Statistics” by David Spiegelhalter 

1.1.6 Example: Harold Shipman Murder Enquiry 

To illustrate and motivate the study of statistics consider the Harold Shipman murder 
enquiry data example as discussed in the book, The Art of Statistics by Spiegelhalter 
[20]. Shipman was a British family doctor and serial killer who killed at least 215 
of his most elderly patients by injecting opium between 1975 and 1998. His killing 
spree went undetected until an enquiry was launched during 1998–1999. He was 
finally convicted in January 2000. Figure 1.1 provides a graph of the percentages of 
patients dying in each of the 24 hours in a day. No sophisticated statistical analysis 
is required to detect the obvious pattern in the data, which shows that 2PM is the 
very unusual peak time of death for Shipman’s patients. Further background and 
details are provided in Chapter 1 of the book by Prof David Spiegelhalter [20]. 

This example illustrates the importance of studying probability and statistics for 
data based sciences, although it did not require any sophisticated statistical methods 
about to be presented in the book. However, it is essential to learn a plethora of 
statistical methods to fully appreciate the strength of the evidence present in Fig. 1.1. 

1.1.7 Summary 

In summary, we note that statistical methods are, often, the only and essential 
tools to be applied whenever there is uncertainty and complete enumeration is not 
possible. Any analysis of empirically collected data must stand up to scientific (read
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as statistical) scrutiny and hence statistical knowledge is essential for conducting 
any scientific investigation. As a result, it is enormously advantageous to have good 
statistical data analysis skills to advance in most career paths in academia, industry 
and government. 

This section has also discussed the main purpose of statistics—mainly to assess 
and to reduce uncertainty in the drawn conclusions. It also noted the place of 
statistics among different scientific disciplines and mathematics. Statistics and 
mathematics are best studied together as statistical applications provide rich training 
grounds for learning mathematical methods and mathematical theories and logic, on 
the other hand, help develop and justify complex statistical methods. 

This section also tackles the often discussed misconceptions regarding the use of 
statistics in everyday life. It is often argued that statistics and statistical methods can 
be used to both prove or disprove a single assertion. This section has put forward the 
counter argument that data, being pure numbers, does not lie but users of statistics 
are liable to make mistakes either un-knowingly or knowingly through deceptions. 
A robust use of statistics is recommended so that the drawn conclusions can stand 
up to scientific scrutiny. Unfortunately, this task is to be taken by the producers of 
statistics so that only sound conclusions are reported in the first place. 

For further reading, we note two accessible books: Statistics and Truth by Rao 
[15] and (ii) The Art of Statistics by David Spiegelhalter [20]. In addition, there are 
many online resources that discuss the joy of statistics. For example, we recommend 
the reader to watch the YouTube video Joy of Statistics.2 

To acknowledge the references used for this book, we note the excellent text-
books written by Goon et al. [7], Casella and Berger [3], DeGroot and Schervish [4] 
and Ross [17]. We also acknowledge two books of worked examples in probability 
and statistics by Dunstan et al. [5, 6]. We also borrowed example exercises from 
the Cambridge International AS and A-level Mathematics Statistics (2012) book 
published by Hodder Education (ISBN-9781444146509) and written by Sophie 
Goldie and Roger Porkess. 

1.2 Example Data Sets 

Before introducing the example data sets it may be pertinent to ask the question, 
“How does one collect data in statistics?” Recall the definition of statistics in 
Sect. 1.1.1 where it states that statistics uses a representative sample to infer 
proportions in a whole, which we call the population. To collect a representative 
sample from a population the experimenter must select individuals randomly or 
haphazardly using a lottery for example. Otherwise we may introduce bias. For 
example, in order to gauge student opinion in a university, an investigator should 
not only survey the international students. However, there are cases when systematic 
sampling, e.g., selecting every third caller in a radio phone-in show for a prize, or

2 https://www.youtube.com/watch?v=cdf0k545yDA. 

https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
https://www.youtube.com/watch?v=cdf0k545yDA
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sampling air pollution hourly or daily, may be preferable. This discussion regarding 
random sample collection and designed experiments, where the investigator controls 
the values of certain experimental variables and then measures a corresponding 
output or response variable, is deferred to Sects. 9.1 and 12.7. Until then we assume 
that we have data from n randomly selected sampling units. 

For each of the n sampling units, we may collect information regarding a single 
or multiple characteristics. In the first case we conveniently denote the data by 
.x1, x2, . . . , xn, so that these values are numeric, either discrete counts, e.g. number 
of road accidents, or continuous, e.g. heights of 18-year old girls, marks obtained 
in an examination. In case multiple measurements are taken, we often introduce 
more elaborate notations. For example, the variable of interest for the ith individual 
is denoted by . yi and the other variables, assuming p many, for individual i may 
be denoted by .xi1, . . . , xip. The billionaires data set introduced below provides an 
example of this. 

We now introduce several data sets that will be used as running examples 
throughout this book. Later chapters of this book may use the same data set 
to illustrate different statistical concepts and theories. All these data sets are 
downloadable from the online supplement of this book and also included in the 
R package ipsRdbs accompanying this book. Some of these data sets are taken 
from the data and story library.3 

Example 1.1 (Fast Food Service Time) 

The table (data obtained from the online Data and Story library in 2018) below 
provides the service times (in seconds) of customers at a fast-food restaurant 
(Fig. 1.2). The first row is for customers who were served from 9–10AM and the 
second row is for customers who were served from 2–3PM on the same day. The 
data set is ffood in the R package ipsRdbs with a help file obtained using the 
command ?ffood. 

AM 38, 100, 64, 43, 63, 59, 107, 52, 86, 77 

PM 45, 62, 52, 72, 81, 88, 64, 75, 59, 70 

Note that the service times are not paired, i.e. the times in the first column, 38 and 
45, are not related. Those are time in seconds for two different customers possibly 
served by different workers in two different shifts. Issues that we would like to 
investigate include analyses of the AM and PM service times and comparison of 
differences between the times. ◀

3 https://dasl.datadescription.com/. 

https://dasl.datadescription.com/
https://dasl.datadescription.com/
https://dasl.datadescription.com/
https://dasl.datadescription.com/


10 1 Introduction to Basic Statistics

Fig. 1.2 A fast food restaurant in Kyiv, Ukraine 2012. A photo by Sharon Hahn Darlin, source: 
Wikimedia Commons. https://www.flickr.com/photos/sharonhahndarlin/8088905486/. License: 
CC-BY-2.0 

Table 1.1 Number of 
weekly computer failures 
over two years 

4 0 0 0 3 2 0 0 6 7 

6 2 1 11 6 1 2 1 1 2 

0 2 2 1 0 12 8 4 5 0 

5 4 1 0 8 2 5 2 1 12 

8 9 10 17 2 3 4 8 1 2 

5 1 2 2 3 1 2 0 2 1 

6 3 3 6 11 10 4 3 0 2 

4 2 1 5 3 3 2 5 3 4 

1 3 6 4 4 5 2 10 4 1 

5 6 9 7 3 1 3 0 2 2 

1 4 2 13 

Example 1.2 (Computer Failures) 

This data set (Table 1.1) contains weekly failures of a university computer system 
(See Fig. 1.3) over a period of two years. The source of the data set is the book 
‘A Handbook of Small Data Sets’ by Hand et al. [8], thanks to Prof Jon Forster 
(author of Kendall et al. [9]) for sharing this. We will use this data set to illustrate 
commands in the R software package and also in statistical modelling. The data 
set is cfail in the R package ipsRdbs and there is a help file obtained by 
issuing the command ?cfail. ◀

Example 1.3 (Number of Bomb Hits in London During World War II (See Fig. 1.4)) 

This data set is taken from the research article Shaw and Shaw [19] via the book 
by Hand et al. [8] and Prof Dankmar Böhning, (author of Böhning et al. [2]). 
The city of Greater London is divided into 576 small areas of one-quarter square
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Fig. 1.3 PCs running 
Windows. Photo by Project 
Manhattan. License: CC 
BY-SA 3.0 

Fig. 1.4 London Blitz. Photo 
by H. F. Davis 

kilometre each. The number of bomb hits during World War II in each of the 576 
areas was recorded. The table below provides the frequencies of the numbers of 
hits. 

Number of hits 0 1 2 3 4 5 Total 

Frequency 229 211 93 35 7 1 576 

Thus, 229 areas were not hit at all, 211 areas had exactly one hit and so on. 
Like the previous computer failure data example, we will use this to illustrate 
and compare statistical modelling methods. The data set is bombhits in the 
R package ipsRdbs and there is a help file which is accessed by issuing the 
command ?bombhits. ◀

Example 1.4 (Weight Gain of Students) 

This data set was collected to investigate if students (see Fig. 1.5) tend to gain 
weight during their first year in college/university. In order to test this, David 
Levitsky, a Professor of Nutrition in the Cornell University (USA), recruited 
students from two large sections of an introductory course in health care, see 
the article Levitsky et al. [11]. Although they were volunteers, they appeared 
to match the rest of the freshman class in terms of demographic variables such 
as sex and ethnicity. Sixty-eight students were weighed during the first week of 
the semester, then again 12 weeks later. The table below provides the first and
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Fig. 1.5 College students. Source: https://www.freestock.com/free-photos/college-university-
students-smiling-classroom-23344615 Image used under license from Freestock.com 

last three rows of the data set in kilograms, which was converted from imperial 
measurement in pounds and ounces. 

Student number Initial weight (kg) Final weight (kg) 

1 77.6 76.2 

2 49.9 50.3 

3 60.8 61.7 
. 
. 
. 

. 

. 

. 
. 
. 
. 

66 52.2 54.0 

67 75.7 77.1 

68 59.4 59.4 

This data set will be used to illustrate simple exploratory charts in R and also 
to demonstrate what is known as statistical hypothesis testing. The data set is 
wgain in the R package ipsRdbs , with an associated help file ?wgain. ◀

Example 1.5 (Body Fat Percentage) 

Knowledge of the fat content of the human body is physiologically and medically 
important. The fat content may influence susceptibility to disease, the outcome 
of disease, the effectiveness of drugs (especially anaesthetics) and the ability 
to withstand adverse conditions including exposure to cold and starvation. In 
practice, fat content is difficult to measure directly—one way is by measuring 
body density which requires subjects to be weighed underwater! For this reason, 
it is useful to try to relate simpler measures such as skin-fold thicknesses (which

https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
https://www.freestock.com/free-photos/college-university-students-smiling-classroom-23344615
Freestock.com
Freestock.com
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Fig. 1.6 Womens 5000 m start at the 2012 Olympics by Nick Webb. Source: Wikipedia. License: 
CC BY 2.0 

are readily measured using calipers) to body fat content and then use these to 
estimate the body fat content. 

Dr R. Telford, working for the Australian Institute of Sport (AIS), collected 
skin-fold (the sum of four skin-fold measurements) and percent body fat 
measurements on 102 elite athletes training at the AIS (see Fig. 1.6). Obtained 
from Prof Alan H. Welsh (author of Welsh [21]), the data set bodyfat is made 
available from the R package ipsRdbs and the R command ?bodyfat provides 
further information and code for exploring and modelling the data, which has 
been perfprmed in Chap. 17. ◀

Athlete Skin-fold Body-fat (%) 

1 44.5 8.47 

2 41.8 7.68 

3 33.7 6.16 
. 
. 
. 

. 

. 

. 
. 
. 
. 

100 47.6 8.51 

101 60.4 11.50 

102 34.9 6.26 

Example 1.6 (Wealth of Billionaires) 

Fortune magazine publishes a list of the world’s billionaires each year. The 
1992 list includes 225 individuals from five regions: Asia, Europe, Middle East,
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Fig. 1.7 Stack of 100 dollar 
bills. Source: Wikimedia 
Commons. License: CC 
BY-SA 3.0 

United States, and Other. For these 225 individuals we also have their wealth (in 
billions of dollars, see Fig. 1.7) and age (in years). The first and last two rows of 
the data set are given in the table below. 

Wealth Age Region 

37.0 50 M 

24.0 88 U 
. 
. 
. 

. 

. 

. 
. 
. 
. 

1 9 M 

1 59 E 

This example will investigate differences in wealth of billionaires due to age and 
region using many exploratory graphical tools and statistical methods. The data 
set is bill in the R package ipsRdbs and a help file is obtained by issuing the 
command ?bill. ◀

1.3 Basic Statistics 

Having motivated to study statistics and introduced the data sets, our mission in this 
section is to learn some basic summary statistics and graphical tools through the use 
of the R software package. This section also aims to explore the summary statistics 
using basic mathematical tools such as the summation symbol . 

∑
and minimisation 

methods, which will be used repeatedly in the later chapters. 
Suitable summaries of data are used to describe the data sets. The needs and 

motivation behind data collection often dictate what particular statistical summaries 
to report in the data description. Usually the non-numeric categorical variables 
are summarised by frequency tables. For example, we may report the number of 
billionaires in each of the five regions. For numeric variables we would like to know
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the centre of the data, i.e., measures of location or central tendency, and the spread 
or variability. The two sections below introduce these measures. 

1.3.1 Measures of Location 

This section defines three most common measures of location: mean, median and 
mode. It also justifies appropriateness of their use as a representative value for the 
data through theoretical arguments. The section ends with a discussion to decide the 
most suitable measure in practical applications. 

1.3.1.1 Mean, Median and Mode 
Suppose that the we have the data .x1, x2, . . . , xn for which we are seeking a 
representative value, which will be a function of the data. The sample mean denoted 
by . x̄ and defined by 

. x̄ = 1

n
(x1 + x2 + · · · + xn) = 1

n

n∑

i=1

xi,

is a candidate for that representative value. Two other popular measures are the 
sample median and sample mode which we define below. 

The sample median is the middle value in the ordered list of values 
.x1, x2, . . . , xn. Consider the AM service time data in Example 1.1 where the 
values are: 38, 100, 64, 43, 63, 59, 107, 52, 86, 77. Obviously, we first write these 
values in order: 

. 38 < 43 < 52 < 59 < 63 < 64 < 77 < 86 < 100 < 107.

There does not exist a unique middle value. But it is clear that the middle value must 
lie between 63 and 64. Hence, median is defined to be any value between 63 and 64. 
For the sake of definiteness, we may chose the mid-point 63.5 as the median. 

In general, how do we find the middle value of the numbers .x1, x2, . . . , xn? 
Mimicking the above example, we first write these values in order: 

. x(1) ≤ x(2) ≤ · · · ≤ x(n),

where .x(1) denotes the minimum and .x(n) denotes the maximum of the n data values 
.x1, x2, . . . , xn. Note that we simply do not write .x1 ≤ x2 ≤ · · · ≤ xn since that 
would be wrong when data are not arranged in increasing order. Hence the new 
notation .x(i), i = 1, . . . , n has been introduced here. For example, if 10 randomly 
observed values are: 9, 1, 5, 6, 8, 2, 10, 3, 4, and 7, then .x1 = 9 but .x(1) = 1. 

If n is odd then .x
( n+1

2 )
is the median value. For example, if .n = 11 then the 

6th value in the ordering of 11 sample values is the sample median. If n is even 

then sample median is defined to be any value in the interval .
(
x( n

2 ), x( n
2 +1)

)
. For  

convenience, we often take the mid-point of the interval as the sample median. Thus,
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if .n = 10 then the sample median is defined to be the mean of the 5th and 6th ordered 
values out of these .n = 10 sample values. Thus, for the 10 observed values 9, 1, 5, 
6, 8, 2, 10, 3, 4, and 7, the sample median is 5.5. 

To recap, the sample median is defined as the observation ranked . 12 (n + 1) in 
the ordered list if n is odd. If n is even, the median is any value between . n2 th and 
.( n

2 + 1)th in the ordered list. For example, for the AM service times, .n = 10 and 
.38 < 43 < 52 < 59 < 63 < 64 < 77 < 86 < 100 < 107. So the median is 
any value between 63 and 64. For convenience, we often take the mean of these. 
So the median is 63.5 seconds. Note that we use the unit of the observations when 
reporting any measure of location. 

The third measure of location is the sample mode which is the most frequent 
value in the sample. In the London bomb hits Example 1.3, 0 is the mode of the 
number of bomb hits. If all sample values are distinct, as in the AM service time 
data example, then there is no unique mode. In such cases, especially when n is 
large, sample data may be presented in groups and the modal class may be found 
leading to an approximation for the mode. We, however, do not discuss frequency 
data in any further detail. 

1.3.1.2 Which of the Three Measures to Use? 
Which one of the three candidate representative values, sample mean, median, 
and mode shall we choose in a given situation? This question can be answered 
by considering a possibly fictitious imaginary idea of loss incurred in choosing a 
particular value, i.e., either the sample mean or median, as the representative value 
for all the observations. (Here we are thinking that we are guessing all the sample 
values by the representative value and there will be a loss, i.e. a penalty to be paid 
for incorrect guessing.) 

Suppose a particular number a, e.g. the sample mean, is chosen to be the value 
representing the numbers .x1, x2, . . . , xn. The loss we may incur in choosing a to 
represent any . xi could be a function of the error .xi − a. Hence the total loss is 
.
∑n

i=1(xi − a). But note that the total loss is not a going to be a good measure since 
some of the individual losses will be negative and some will be positive resulting 
in a small value or even a negative value of total loss. Hence, we often assume the 
squared-error loss, .(xi − a)2 or the absolute error loss .|xi − a| for representing 
the observation . xi so that the errors in ether direction (positive or negative) attracts 
similar amount of losses. Then we may choose the a that minimises the total error 
given by .

∑n
i=1(xi−a)2 in the case of squared-error loss. In case we assume absolute 

error loss we will have to find the a that minimises the sum of the absolute losses, 
.
∑n

i=1 |xi − a|. 
It turns out that the sample mean is the a that minimises .

∑n
i=1(xi − a)2 and 

sample median is the a that minimises .
∑n

i=1 |xi − a|. The sample mode minimises 
a third type of loss obtained be considering the 0–1 loss function. In 0–1 loss, the 
loss is defined to be zero if .xi = a and 1 if .xi /= a for .i = 1, . . . , n. That is, the 
loss is zero if a is the correct guess for . xi and 1 if a is an incorrect guess. It is 
now intuitively clear that the sample mode will minimise the total of the 0–1 loss 
function since if .a =sample mode then the loss is going to be 0 for most of the 
observations, .x1, . . . , xn, resulting in the smallest value for total of the 0–1 loss.
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Here now prove that the sample mean minimises the sum of squares of the errors, 
denoted by: 

. SSE =
n∑

i=1

(xi − a)2.

To establish this we can use the derivative method in Calculus, see the exercises. 
Here is an important alternative derivative free proof which will be used in other 
similar circumstances in later chapters. 

Proof Here the trick is to subtract and then add the sample mean . x̄ inside the square 
.(xi − a)2. Then the task is to simplify after expanding the square as follows: 

. 

∑n
i=1(xi − a)2 = ∑n

i=1(xi − x̄ + x̄ − a)2 [subtract and add x]
= ∑n

i=1

{
(xi − x̄)2 + 2(xi − x̄)(x̄ − a) + (x̄ − a)2

}

= ∑n
i=1(xi − x̄)2 + 2(x̄ − a)

∑n
i=1(xi − x̄) + ∑n

i=1(x̄ − a)2

= ∑n
i=1(xi − x̄)2 + n(x̄ − a)2,

since .
∑n

i=1(xi − x̄) = nx − nx = 0. Now note that the first term is free of a; the  
second term is non-negative for any value of a. Hence the minimum occurs when 
the second term is zero, i.e. when .a = x̄. This completes the proof. ⨅⨆

The trick of adding and subtracting the mean, expanding the square and then 
showing that the cross-product term is zero will be used several times in this book 
in the later chapters. Hence it is important to learn this proof. The result is a very 
important in statistics, and this will be used several times in this book. Note that, 
SSE.= ∑n

i=1(x1 −a)2 is the sum of squares of the deviations of .x1, x2, . . . , xn from 
any number a. The established identity states that: 

The sum of (or mean) squares of the deviations of .x1, x2, . . . , xn from any 
number a is minimised when a is the sample mean of .x1, x2, . . . , xn. 

In the proof we also noted that .
∑n

i=1(xi − x̄) = 0. This is stated as: 

. The sum of the deviations of a set of numbers from their mean is zero.
(1.1)
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The sum of the deviations of a set of numbers from their mean is zero. 

We now prove that the sample median minimises the sum of the absolute 
deviations, defined by: 

. SAD =
n∑

i=1

|xi − a|.

Here the derivative approach, stated in the exercises to prove the previous result for 
the sample mean, does not work since the derivative does not exist for the absolute 
function. Instead we use the following argument. 

Proof First, order the observations (see Fig. 1.8): 

. x(1) ≤ x(2) ≤ · · · ≤ x(n).

Now note that: 

. 

SAD = ∑n
i=1 |xi − a|

= ∑n
i=1 |x(i) − a|

= |x(1) − a| + |x(n) − a| + |x(2) − a| + |x(n−1) − a| + · · ·

Now see Fig. 1.9 for a visualisation of the following argument. From the top line in 
the figure it is clear that .S1(a) = |x(1) − a| + |x(n) − a| is minimised when a is such 
that .x(1) ≤ a ≤ x(n), in which case .S1(a) takes the value .|x(1) − x(n)|. Otherwise, 
suppose a lies outside of the interval .

(
x(1), x(n)

)
. For example, if .a < x(1) then 

x(2) x(n–2) x(n–1) x(n)...x(1) ∞+∞– 
****** 

Fig. 1.8 Illustration of ordered observations 

Fig. 1.9 Visualisation of the 
proof that the sample median 
minimises the sum of the 
absolute deviations 

x(1) 

x(2) 
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x(4) 
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.S1(a) will take the value .|x(1) − x(n)| plus .2 × |x(1) − a|. Thus to minimise . S1(a)

we must put a somewhere in the interval .
(
x(1), x(n)

)
. 

Continuing this argument we conclude that, .|x(2) −a|+|x(n−1) −a| is minimised 
when a is such that .x(2) ≤ a ≤ x(n−1). Finally, when n is odd, the last term . |x

( n+1
2 )

−
a| is minimised when .a = x

( n+1
2 )

or the middle value in the ordered list. In this case 
a has been defined as the sample median above. If, however, n is even, the last pair 
of terms will be .|x( n

2 ) − a| + |x( n
2 +1) − a|. This will be minimised when a is any 

value between .x( n
2 ) and .x( n

2 +1), which has been defined as the sample median in 
case n is even. Hence this completes the proof. ⨅⨆

This establishes the fact that: 

the sum (or mean) of the absolute deviations of .x1, . . . , xn from any number 
a is minimised when a is the sample median of .x1, . . . , xn. 

There is the concept of third type of loss, called a 0-1 loss, when we are searching 
for a measure of central tendency. In this case, it is intuitive that the best guess a 
will be the mode of the data, which is the most frequent value. 

Which of the Three (Mean, Median and Mode) Should We Prefer? Obviously, 
the answer will depend on the type of loss we may assume for the particular 
problem. The decision may also be guided by the fact the sample mean gets more 
affected by extreme observations while the sample median does not. For example 
for the AM service times, suppose the next observation is 190. The median will be 
64 instead of 63.5 but the mean will shoot up to 79.9. 

1.3.2 Measures of Spread 

The measures of central tendency defined in the previous section does not convey 
anything regarding the variability or spread of the data. Often, it is of interest to 
know how tightly packed the data are around the chosen centre, one of sample mean, 
median or mode. This section discusses three measures of spread or variability. 

A quick measure of the spread is the range, which is defined as the difference 
between the maximum and minimum observations. For example, for the AM service 
times in the Fast Food Example 1.1 the range is 69 .(= 107 − 38) seconds. The 
range, however, is not a very useful measure of spread, as it is extremely sensitive to 
the values of the two extreme observations. Furthermore, it gives little information 
about the distribution of the observations between the two extremes.
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A better measure of spread is given by the sample standard deviation, denoted by 
s, which the square-root of the sample variance, . s2, defined by 

. Var(x) = s2 = 1
n−1

∑n
i=1(xi − x̄)2.

The sample variance is defined with the divisor .n − 1 since there are some 
advantages which will be discussed in Sect. 9.4.1. The divisor .n− 1 is the default in 
R. for the command var. 

The population variance is defined with the divisor n instead of .n−1 in the above. 
Although . s2 above is defined as the mean of sum of squares of the deviations 

from the mean, we do not normally calculate it using that formula. Instead, we use 
the following fundamental identity: 

. 

∑n
i=1(xi − x̄)2 = ∑n

i=1

(
x2
i − 2xi x̄ + x̄2

)

= ∑n
i=1 x2

i − 2x̄(nx̄) + nx̄2

= ∑n
i=1 x2

i − nx̄2.

Hence we prefer to calculate variance by the formula: 

. Var(x) = s2 = 1
n−1

(∑n
i=1 x2

i − nx̄2
)

and the standard deviation is taken as the square-root of the variance. For example, 
the standard deviation of the AM service times is 23.2 seconds. Note that standard 
deviation has the same unit as the observations. 

A third measure of spread is what is known as the inter-quartile range (IQR). 
The IQR is the difference between the third, .Q3 and first, .Q1 quartiles, which are 
respectively the observations ranked . 14 (3n + 1) and . 14 (n + 3) in the ordered list, 
.x(1) ≤ x(2) ≤ · · · ≤ x(n). Note that the sample median is the second quartile, . Q2. 
When n is even, definitions of .Q3 and .Q1 are similar to that of the median, . Q2. The  
lower and upper quartiles, together with the median, divide the observations up into 
four sets of equal size. For the AM service times 

. 38 < 43 < 52 < 59 < 63 < 64 < 77 < 86 < 100 < 107

.Q1 lies between 52 and 59, while .Q3 lies between 77 and 86. Some linear 
interpolation methods are used to find approximate values in R. We, however, do 
not discuss this any further. 

Usually the three measures: range, sd and IQR are not used interchangeably. 
The range is often used in data description, the most popular measure, standard
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Fig. 1.10 A sketch of a  
boxplot diagram 

Q2 Q3Q1 

Scale of data 

** * * 

deviation, is used as a measure of variability or concentration around the sample 
mean and the IQR is most often used in graphical summaries of the data such as the 
boxplot which is described in the next section. 

1.3.3 Boxplot 

A boxplot of sample data, e.g. computer failure data, plots the three quartiles and 
also provides valuable information regarding the shape and concentration of the 
data. From a boxplot, we can immediately gain information concerning the centre, 
spread, and extremes of the distribution of the observations (Fig. 1.10). 

Constructing a boxplot involves the following steps: 

1. Draw a vertical (or horizontal) axis representing the interval scale on which the 
observations are made. 

2. Calculate the median, and upper and lower quartiles (. Q1, . Q3) as described above. 
Calculate the inter-quartile range (or ‘midspread’) .H = Q3 − Q1. 

3. Draw a rectangular box alongside the axis, the ends of which are positioned at 
.Q1 and . Q3. Hence, the box covers the ‘middle half’ of the observations). .Q1 and 
.Q3 are referred to as the ‘hinges’. 

4. Divide the box into two by drawing a line across it at the median. 
5. The whiskers are lines which extend from the hinges as far as the most extreme 

observation which lies within a distance .1.5 × H , of the hinges. 
6. Any observations beyond the ends of the whiskers (further than .1.5×H from the 

hinges) are suspected outliers and are each marked on the plot as individual points 
at the appropriate values. (Sometimes a different style of marking is used for any 
outliers which are at a distance greater than H from the end of the whiskers). 

Figure 1.11 shows a boxplot of the number of weekly computer failure data 
introduced in Example 1.2. The two quartiles .Q1 and .Q3 are drawn as vertical lines 
at the two edges of the box and the median is the bold vertical line drawn through 
the middle of the box. The whiskers are the horizontal lines drawn at the two edges 
of the box. There are three extreme observations plotted as individual points beyond 
the whisker at the right of the plot. Comparing the lengths of the two whiskers, we 
see that the data shows an un-even distribution where there is a larger spread of 
values in the right hand side of the median, or the right tail. Such a distribution of
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Fig. 1.11 A boxplot of 
computer failure data 

the data is often called to be positively (or right) skewed. We will learn how to draw 
such a plot using R in Chap. 2. 

Exploration of statistical data uses many other plots such as the stem and leaf 
plot, histogram, barplot and pie chart. However, this textbook does not provide 
discussion of such plots for brevity. Instead, the interested reader is referred to 
school level elementary statistics textbooks for detailed discussions on such topics. 

1.3.4 Summary 

This section has introduced three measures of location: mean, median and mode, 
each of which is optimal under a different consideration. We have also introduced 
three measures of variability range, sd and the IQR, each of which has the same unit 
as the original data. 

1.4 Exercises 

1.1 (Addition with the Summation Symbol
∑

)

• Assume x1, . . . , xn and y1, . . . , yn are real numbers not all zero. Also, a, b, k are 
real numbers and n >  0 is an integer.

• We write 
n∑

i=1 

xi to denote the sum x1+x2+· · ·+xn. We should always include the 

limits and the dummy (e.g. i), i.e., 
n∑

i=1 

xi , and we do not encourage the notation

∑
x since it does not make it clear what numbers are being added up. Also note 

that
∑n 

i=1 xi = ∑n 
j=1 xj , i.e, the letter i or j we write for the dummy does not 

matter.
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1. Prove that
∑n 

i=1 k xi = k
∑n 

i=1 xi . 
2. Prove that

∑n 
i=1(k + xi) = n k  + ∑n 

i=1 xi . 
3. Prove that

∑n 
i=1(xi − x̄) = 0, where x̄ = 1 

n

∑n 
i=1 xi . 

4. Prove that
∑n 

i=1(xi − x̄)2 = ∑n 
i=1 x

2 
i − nx̄2. 

5. Suppose that the values of x1, . . . , xn are known and we want to minimise the 
sum

∑n 
i=1(xi − a)2 with respect to the variable a. Prove that

∑n 
i=1(xi − a)2 is 

minimised when a = x̄ by using the derivative method described below. 
To optimise f (a), we first solve the equation f '(a) = 0. We then see if f ''(a), 

evaluated at the solution, is positive or negative. The function f (a)  attains a local 
minimum at the solution if the sign is positive. The function f (a)  attains a local 
maximum at the solution if the sign is negative. There is neither a minima nor a 
maxima if the second derivative is zero at the solution. Such a point is called a 
point of inflection. 

1.2 (Mean-Variance) 

1. Suppose we have the data: x1 = 1, x2 = 2, . . . , xn = n. Find the mean and the 
variance. For variance use the divisor n instead of n − 1. 

2. Suppose yi = axi + b for i = 1, . . . , n  where a and b are real numbers. Show 
that: 
(a) ȳ ≡ 1 

n

∑n 
i=1 yi = ax̄ + b and 

(b) Var(y) = a2Var(x) where x = 1 
n

∑n 
i=1 xi 

and for variance it is possible to use either the divisor n, i.e. Var(x) =
1 
n

∑n 
i=1(xi − x)2 or n − 1, i.e. Var(x) = 1 

n−1

∑n 
i=1(xi − x)2. The divisor does 

not matter as the results hold regardless. Hint: For the second part, start with the 
left hand side, Var(y) = 1 

n

∑n 
i=1(yi − ȳ)2 and substitute yi and ȳ in terms of xi 

and x̄. 
3. Suppose a ≤ xi ≤ b for i = 1, . . . , n. Show that a ≤ x̄ ≤ b. 

1.3 (Variance Inequality) 

1. Prove that for any set of numbers x1, x2, . . . , xn, 

. 

(
x2

1 + x2
2 + · · · + x2

n

)
≥ (x1 + x2 + . . . xn)

2

n
,

i.e. sum of squares of n numbers is greater than equal to the square of the sum 
divided by n. Hint: You may start by assuming

∑n 
i=1(xi − x)2 ≥ 0 and then 

expand the square within the summation symbol.
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1.4 (Additional Data) 

1. Assume that x1, . . . , xn, xn+1 are given real numbers. Prove that: 
(a) x̄n+1 = xn+1+nx̄n 

n+1 
(b) ns2 

n+1 = (n − 1)s2 
n + n 

n+1 (xn+1 − x̄n)
2. 

2. Assume that x1, . . . , xm and y1, . . . , yn are real numbers not all zero, where 
m and n are positive integers. Let z1, . . . , zn+m denote the combined m + n 
observations, i.e. z = (x1, . . . , xm, y1, . . . , yn) without loss of generality. 

Let x̄, s2 
x , ȳ, s2 

y , z̄, s2 
z denote the sample mean and variance pair of the x’s, y’s 

and z’s respectively. 
(a) Prove that z̄ is given by: 

. ̄z = m x̄ + n ȳ

m + n
.

(b) Prove that the sample variance of the z values is given by: 

.s2
z = (m − 1)s2

x + (n − 1)s2
y

m + n − 1
+ m(x̄ − z̄)2 + n(ȳ − z̄)2

m + n − 1
.

• These two formulae allow us to calculate the mean and variance of the 
combined data easily. 

1.5 (Two Variables and the Cauchy-Schwarz Inequality) Suppose that 
(x1, y1), (x2, y2).  . . . , (xn, yn) are given pairs of numbers. 

1. Prove that 

. 

n∑

i=1

(yi − ȳ)(xi − x̄) =
n∑

i=1

(yi − ȳ)xi =
n∑

i=1

yi(xi − x̄) =
n∑

i=1

yixi − nȳx̄.

2. Prove the Cauchy-Schwarz Inequality. 

. 

(
x2

1 + x2
2 + · · · + x2

n

) (
y2

1 + y2
2 + · · · + y2

n

)
≥ (x1y1 + x2y2 + · · · + xnyn)

2 .

Hint: You can either try the induction method or use the fact that for any set of 
numbers a1, . . . an and b1, . . . bn.: 

.

n∑

i=1

(ai − bi)
2 ≥ 0, and then substitute ai = xi

√∑n
i=1 x2

i

, bi = yi
√∑n

i=1 y2
i

.


